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Let f be a function defined for ¢ = (). Then the integral

LLf(0)} = [( (1) dt (2)
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Is said to be the Laplace transform ™ of f provided the integral converges.
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7 Z 2 Transform of a Derivative

If (1), f'(1),..., f” "(t) are continuous on [0, =) and are of exponential
order and if f"(r) is piecewise continuous on [0, o), then
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where F(s) = £{f(1)}.
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Convolution If functions f and g are piecewise continuous on [0, =), then the
convolution of fand g, denoted by f = g, is given by the integral

- vl 1 - -

t % Sint = S v 7. sin(t- T 4T
o6

(s T dv: SZV\(.'b"T/) Ol-z-/

dus AT vz Ces (t-T)

- ttes0 -0 - LsmC:b-—’m}\

= € ~ Sm(o)—(-l-sl“t)
ct-smt.

$%9=0%3

t t
= Teos (b- T/)\ - Sb Cbstt‘t)&'&



Convolution Theorem
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7'1.(,7) Transform of a Periodic Function

Let f(7) be piecewise continuous on [0, =) and of exponential order. If f(r)
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Transforms of Some Basic Functions

7 '77.\ - First Translation Theorem
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Inverse Form of the First Translation Theorem The inverse form of Theo-
rem 7.5 can be written
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7 . ‘-['.\ Derivatives of Transforms
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I IRg(el R Rcl Unit Step Function

The function %(t — a) is defined to be
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The unit step function can also be used to write piecewise-defined functions
in a compact form. For instance, the piecewise-defined function
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7 .’) '1 Second Translation Theorem

If a is a positive constant, then
( / S ).
where F(s) = £{f(1)}.

We often wish to find the Laplace transform of just the unit step function.
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Inverse Form of the Second Translation Theorem The inverse form of The-
orem 7.6 1s
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Derivatives of Transforms (7; .TL‘% \ S no [V\V%L
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Convolution If functions f and g are piecewise continuous on [0, =), then the
convolution of fand g, denoted by f = g, is given by the integral
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Transform of a Periodic Function

Let f(r) be piecewise continuous on [0, =) and of exponential order. If f(r)
is periodic with period [7,{then
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; The unit step function can also be used to write piecewise-defined functions
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Transform of a Derivative

If (1), f'(1),..., f "(¢) are continuous on [0, ) and are of exponential
order and if f"(1) i1s piecewise continuous on [0, o), then
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